National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Extremely low cycle fatigue life of non-ferrous alloys
Judas, Jakub ; Kohout, Jan (referee) ; Zapletal, Josef (advisor)
This thesis is focused on fatigue behaviour of aluminium alloy 2024-T351 in low cycle and extremely low cycle fatigue regime. Test specimens were firstly subjected to quasi-static tensile and compression tests to establish basic mechanical properties of the experimental material. Fatigue tests were conducted in strain-control mode, when cyclic plastic response and S-N curves were determined. All of the experiments were conducted at room temperature. Shapes of mechanical hysteresis loops are dependent on the strain amplitude and clearly exhibit cyclic plasticity of the alloy. Cyclic deformation curve was fitted by power regression function and subsequently compared with the tensile test. Experimental data of the S-N curves were fitted by Manson-Coffin and Wöhler-Basquin law. The discrepancy of the fatigue data was observed in the extremely low cycle fatigue regime. Based on this phenomenon, new regression function was used to overcome shortening of fatigue life in the extremely low cycle regime.
Extremely low cycle fatigue life of non-ferrous alloys
Judas, Jakub ; Kohout, Jan (referee) ; Zapletal, Josef (advisor)
This thesis is focused on fatigue behaviour of aluminium alloy 2024-T351 in low cycle and extremely low cycle fatigue regime. Test specimens were firstly subjected to quasi-static tensile and compression tests to establish basic mechanical properties of the experimental material. Fatigue tests were conducted in strain-control mode, when cyclic plastic response and S-N curves were determined. All of the experiments were conducted at room temperature. Shapes of mechanical hysteresis loops are dependent on the strain amplitude and clearly exhibit cyclic plasticity of the alloy. Cyclic deformation curve was fitted by power regression function and subsequently compared with the tensile test. Experimental data of the S-N curves were fitted by Manson-Coffin and Wöhler-Basquin law. The discrepancy of the fatigue data was observed in the extremely low cycle fatigue regime. Based on this phenomenon, new regression function was used to overcome shortening of fatigue life in the extremely low cycle regime.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.